Integrated Biscayne Bay Ecological Assessment and Monitoring (IBBEAM): 6 Years of Everglades Restoration Monitoring on the Nearshore Ecosystem

Presented by: Nicole Besemer¹

Principal Investigators: Diego Lirman¹, Erik Stabenau², Joan A. Browder³, Joseph E. Serafy^{1,3}, Research Staff: Herve Jobert^{1,5}, Ian C. Zink^{4,3}, Evan D'Alessandro¹, Martine D'Alessandro¹

¹MBE Department, RSMAS, University of Miami, Miami, FL ²South Florida Natural Resource Center, National Park Service, Homestead, FL ³SEFSC, NMFS, National Oceanic and Atmospheric Administration, Miami, FL ⁴CIMAS, RSMAS, University of Miami, Miami, FL ⁵Biscayne National Park, National Park Service, Homestead, FL

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

IBBEAM & Relationship to CERP

Biscayn

D

a V

 \square

oastal

Wetlands

IBBEAM & Relationship to CERP

Four components of IBBEAM:

Salinity Monitoring Network

Designed to meet monitoring and modeling data needs as close as possible to the shoreline at specific features

Instruments:

• YSI 6600: paired 15 min recording 24 hr/365 d

Parameters:

- Water Depth
- Temperature
- Salinity

Salinity Monitoring Network

Mesohaline Index = proportion of salinity obs. Are between ≥ 5 and < 18 psu **Hyperhaline Index =** proportion of salinity obs. >40 **Salinity Variability Index =** proportion of salinity obs. Where daily range is >5 **Salinity Regime Suitability Index =** composite of previous 3 mentioned

WYR	2010		2011		2012		2013		2014		2015		2016		2017		2018		2019		Mean	
CYR	2009	2010	2010	2011	2011	2012	2012	2013	2013	2014	2014	2015	2015	2016	2016	2017	2017	2018	2018			
Month	May-Oct	Nov-Apr	May-Oct		May-Oct	Nov-Apr																
eason	Vet	Dry	Vet		Vet	Dry																
D6			0.00	0.00	0.01	0.00	0.08	0.00	0.07	0.00	0.00	0.00	0.00	0.06	0.01	0.00	0.07	0.00	0.06		0.04	0.01
D2			0.00	0.00	0.01	0.01	0.07	0.00	0.07	0.00	0.00	0.00	0.00	0.07	0.01	0.00	0.08	0.00	0.09		0.04	0.01
62	0.01	0.00	0.10	0.00	0.02	0.02	0.25	0.00	0.22	0.00	0.00	0.00	0.01	0.15	0.06	0.00	0.20	0.01	0.12		0.11	0.02
C8			0.11	0.00	0.02	0.03	0.34	0.00	0.22	0.01	0.00	0.00	0.01	0.27	0.08	0.00	0.18	0.01	0.14		0.12	0.04
C6			0.11	0.00	0.03	0.04	0.58	0.00	0.38	0.00	0.00	0.00	0.00	0.31	0.21	0.00	0.23	0.01	0.25		0.21	0.05
56	0.05	0.01	0.14	0.00	0.07	0.04	0.65	0.00	0.45	0.01	0.01	0.00	0.00	0.38	0.31	0.00	0.38	0.03	0.36		0.28	0.06
C4			0.22	0.00	0.09	0.05	0.65	0.00	0.50	0.01	0.07	0.00	0.00	0.51	0.43	0.00	0.51	0.06	0.42		0.33	0.08
C2			0.34	0.04	0.19	0.09	0.69	0.01	0.42	0.11	0.08	0.00	0.02	0.60	0.50	0.00	0.56	0.11	0.54		0.37	0.12
B8			0.29	0.05	0.06	0.14	0.78	0.01	0.72	0.17	0.05	0.08	0.00	0.66	0.49	0.00	0.43	0.12	0.49		0.38	0.15
B6			0.65	0.14	0.37	0.40	0.67	0.44	0.53	0.43	0.33	0.13	0.16	0.74	0.67	0.14	0.54	0.46	0.54		0.48	0.36
B4			0.46	0.14	0.28	0.54	0.74	0.19	0.56	0.42	0.19	0.34	0.14	0.87	0.61	0.26	0.52	0.63	0.56		0.45	0.42
40	0.29	0.22	0.49	0.14	0.37	0.53	0.83	0.17	0.73	0.40	0.14	0.12	0.10	0.91	0.61	0.22	0.56	0.55	0.56		0.49	0.38
28	0.16	0.17	0.52	0.11	0.23	0.43	0.78	0.11	0.59	0.33	0.11	0.13	0.07	0.88	0.46	0.15	0.46	0.55	0.49		0.40	0.34
22	0.24	0.16	0.60	0.12	0.25	0.45	0.72	0.11	0.60	0.29	0.11	0.07	0.05	0.84	0.46	0.16	0.42	0.51	0.47		0.38	0.32
A8			0.44	0.12	0.19	0.42	0.60	0.14	0.51	0.24	0.09	0.14	0.07	0.70	0.42	0.18	0.42	0.43	0.49		0.35	0.30
14	0.24	0.23	0.44	0.13	0.21	0.57	0.57	0.22	0.53	0.13	0.11	0.18	0.09	0.68	0.46	0.25	0.48	0.44	0.51		0.37	0.32
A6			0.09	0.04	0.06	0.18	0.22	0.01	0.09	0.03	0.02	0.01	0.04	0.30	0.06	0.03	0.16	0.16	0.08		0.09	0.09
DJ		0.82	0.30	0.56	0.22																0.26	0.69

No color insufficient data

Florida Bay Reference Site: DJ (Downstream Joe Bay)

SAV Community

Halodule wrightii 个

↑ Benthic SAV habitat

↑ SAV survey

Survey Methods

Designed to access submerged aquatic vegetation communities in nearshore habitats and quantify relationship with Salinity

- Every Wet Season
- 100-120 randomly sampled sites
- Water quality parameters measured at each site
- Data from 10 quadrates per site including percent cover of:
 - Seagrass species
 - Algae
 - Sediment Depth
 - Canopy Height

SAV Community

1.0

0.8

0.6

0.4

PredOccurrence

Temporal Trajectory

Multiple Regression Approach:

H. wrightii Occurrence = **Sal** + Depth + Temp + **Sal**² + Depth² + Temp²

Bio-Physical Relationships

Epifaunal Community

 \uparrow Throw trap sampling \downarrow

Survey Methods

Compare past and present SAV associated epifauna to determine status and trends for before/after CERP comparison

Methods

- Every wet and dry season (generally October and March)
- 47 sites
- Water quality parameters measured at each site
- 1-m² throw trap thrown 3 times
- Organisms identified, weighed, measured

Epifaunal Community

Temporal Trajectory

Bio-Physical Relationships

F. duorarum Density = **Sal** + Temp + TH + HA + **Sal**² + HA²

 $p \leq 0.05$

Mangrove Fish Community

Survey Methods

Compare and contrast mangrove associated fish for status and trends before/after CERP

- 30 m long belt-transect survey
- Data collected includes:
 - Water quality parameters at each site
 - Taxonomic identification
 - Number
 - Size structure (min, max avg. length)
 - Depth

Mangrove Fish Community

Temporal Trajectory

Bio-Physical Relationships

Salinity Network: Research

Prep, Besemer et al. In Prep

33145.

SAV Community: Research

Estuaries and Coasts (2014) 37:1243-1255 DOI 10.1007/s12237-014-9769-6

SAV Communities of Western Biscayne Bay, Miami, Florida, USA: Human and Natural Drivers of Seagrass and Macroalgae Abundance and Distribution Along a Continuous Shoreline

D. Lirman • T. Thyberg • R. Santos • S. Schopmeyer • C. Drury • L. Collado-Vides • S. Bellmund • J. Serafy

Other Publications:

Santos and Lirman 2012; Lirman et al. 2011; Santos et al. 2011; Collado-Vides et al. 2011; Lirman et al. 2008a, b

Thalassia Halodule Syringodium

Epifauna Community: Research

RESEARCH ARTICLE

Pink shrimp *Farfantepenaeus duorarum* spatiotemporal abundance trends along an urban, subtropical shoreline slated for restoration

Ian C. Zinko^{1,2}*, Joan A. Browder², Diego Lirman³, Joseph E. Serafy^{2,3}

Other Publications: Browder and Zink Submitted; Besemer et al. In Prep

Mangrove Fish: Research

Killifish habitat suitability as a measure of coastal restoration performance: Integrating field data, behavioral trials and simulatior

L.C. McManus^{a,*}, S. Yurek^b, P.B. Teare^a, T.E. Dolan^a, J.E. Serafy^{a,c}

^a University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
^b Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33124-0421, United States
^c Southeast Fisheries Science Center, National Marine Fisheries Service, 75 Virginia Beach Drive, Miami, FL 33149, United States

↑*Flordichthys carpio*

Other Publications:

Faunce and Serafy 2007, 2008; Faunce et al. 2002; Serafy et al. 2007, 2003

IBBEAM – Lessons Learned

Seagrass target should be refined to consider mixed seagrass beds of *Halodule wrightii* and *Thalassia testudium* instead of only *H. wrightii*

Epifauna key species relationships with salinity are statistically significant, and predictions (occurrence and density) from them become more consistent from year to year as more years of data are added

Still waiting to see true establishment of some estuarine flora and fauna

Thank you! Questions?

A special thanks is deserved by the many technicians who have supported this project over the years

We would also like to thank USACE for support of this work: IBBEAM is comprised of elements 3.2.3.3, 3.2.4.7, and 3.2.3.6 of CERP RECOVER MAP Southern Coastal Systems Module

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

